

DATA SHEET Hall Effect Current Sensor

PN: CHK QD35S2L

 $I_{PN} = 400 - 1000A$

Supply voltage: DC +5.0V

Feature

- Open-loop
- Capable measurement of currents: DC, AC, pulse with galvanic isolation between primary circuit and Automotive grade hall chip.
- secondary circuit.

Advantages

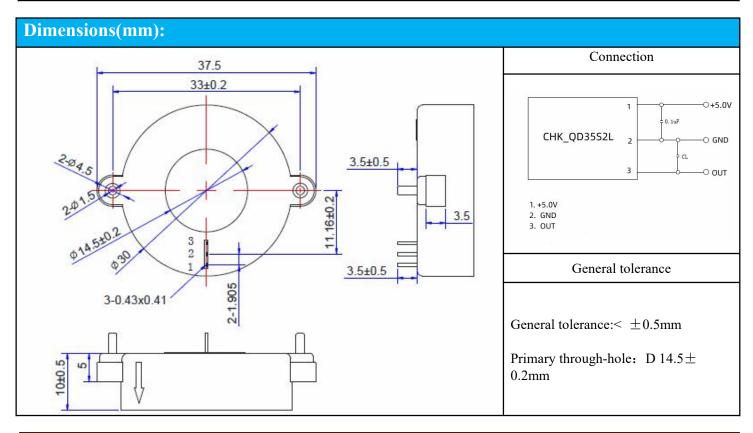
- Small size, space saving
- Easy installation
- Optimized response time, no insertion losses
- High immunity to external interference

Applications

- Electric vehicle
- AC variable frequency governor
- DC motor driven static converter
- Communication power supply
- Uninterruptible power supply
- Switching Mode Power Supply
- Application of welding machine power supply

1

Electrical data: (Ta=25°C, Vc=+5.0VDC,RL=10.0KΩ)								
Parameter Ref	CHK400 QD35S2L	CHK500 QD35S2L	CHK600 QD35S2L	CHK700 QD35S2L	CHK800 QD35S2L	CHK900 QD35S2L	CHK1000 QD35S2L	
Rated input Ipn(A)	400	500	600	700	800	900	1000	
Measuring range Ip(A)	$0 \sim \pm 400$	$0 \sim \pm 500$	0~±600	$0 \sim \pm 700$	$0 \sim \pm 800$	0~±900	0~±1000	
Rated measurement output (V)	$V_{\rm C}/2\pm2V$							
Output offset voltage Vo(V)	$V_{\rm C}/2\pm0.025$							
Load resistance $R_L(k\Omega)$	≥ 4.7							
Power supply voltage (V)	+5V (± 5%)							
Current consumption I _C (mA)	≤10							
Accuracy X _G (%)	≤1 (-40°C~+105°C)							
	≤1.5 (+105°C∼+125°C)							
Linearity error $\varepsilon r(\%FS)$	≤1							
Zero offset voltage coefficient TCV _{OE} (mV/°C)	≤±0.15							
Output voltage temperature coefficient TCV _{out} (%/°C)	$\leq \pm 0.05$							
Di/dt accurately followed (A/µs)	> 100							


Cheemi Technology Co., Ltd

Tel: 025-85996365 E-mail: info@cheemi-tech.com www. cheemi-tech.com Add:N22, Xianlongwan, Xianyin South Road, Qixia District, Nanjing - China.

Cheemi Technology Co., Ltd

Response time $t_{ra}(\mu s)$	≤7
Bandwidth (-3db) Bw(KHZ)	DC-17
Withstand voltage between primary circuit and secondary circuit Vd (KV)	@50Hz/60s/0.1mA 3.0

General data:				
Parameter	Value			
Operating temperature $T_A(^{\circ}C)$	- 40 ∼ +125			
Storage temperature $T_S(^{\circ}C)$	-55~ +125			
Mass M(g)	22			
Standards	High and low temperatures meet the testing requirements of EN50178 standard 9.4.2.1.			
	Damp heat meets the testing requirements of EN50178 standard 9.4.2.2.			
	Vibration meets the testing requirements of EN50178 standard 9.4.3.2.			
	Electromagnetic compatibility meets the testing requirements of EN50178 standard			
	9.4.6.1 and 9.4.6.2.			

Remarks:

- When the current to be measured flows through the input pin of the sensor, it can be measured at the output end measure the magnitude of the current.
- Dynamic performance (di/dt and noise) when the busbar is fully filled with primary perforation
- Different rated input current and output voltage can be customized according to user requirements the sensor.

WARNING: Incorrect wiring may cause damage to the sensor.

