

DATA SHEET Hall Effect Current Sensor

PN: CHK800QR365S2L

 $I_{PN} = \pm 100 \sim \pm 800A$

Description

CHK800QR365S2L family is a tri-phase transducer for DC, AC, or pulse currents measurement in high power and low voltage automotive applications. It offers a galvanic separation between the primary circuit (high power) and the secondary circuit (electronic circuit).

CHK800QR365S2L family gives you a choice of having different current measuring ranges in the same housing (form ± 100 up to ± 800 A).

Feature

- Open Loop hall effect current transducer
- Low voltage application
- All in one tri-phase transducer
- Insulating plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Low power consumption
- No insertion losses
- Very good linearity
- Wide frequency bandwith
 - Very fast response time

Applications

- Starter Generators
- Inverters
- HEV application
- EV application
- DC/DC converter

RoHS

1

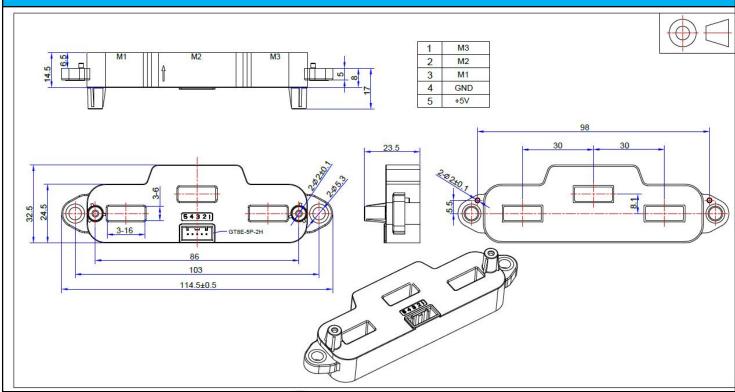
Type of products:		
Туре	Primary nominal current r. m. s I _{PN} (A)	Primary current measuring range I _P (A)
CHK800QR365S2L	800	±900

Cheemi Technology Co., Ltd
Tel: 025-85996365 E-mail: info@cheemi-tech.com www. cheemi-tech.com
Add:N22, Xianlongwan, Xianyin South Road, Qixia District, Nanjing - China.

Cheemi Technology Co., Ltd

Electrical data:								
PARAMETERS	SYMBOL	UNIT	VALUE			CONDITIONS		
			MIN.	TYP.	MAX.			
Supply voltage	Uc	V	4.75	5	5.25			
Current consumption	Ic	mA	20	30	45	$@T_A = 25^{\circ}C$		
Output voltage	V_{OUT}	V	$V_{OUT} = (U_C/5)*(2.5 + G*Ip)$		@Uc= 5V			
Sensitivity	G	mV/A	2.5		@Uc = 5V			
Output Load Resistance	$R_{ m L}$	ΚΩ	4.7	-	-	@V _{OUT} to GND		
Output Load Capacitance	C _L	nF	-	1	10	@V _{OUT} to GND		
Accuracy - Dynamic performance data								
Accuracy	X_{G}	% of I _{PN}	-	0.5	-	@ I_{PN} , $T_A = 25$ °C, $Uc=5V$ (excluding offset)		
Linearity (0±IPN)	εL	% of I _{PN}	-1	-	1			
Electrical offset voltage	V_{OE}	mV	2.5V±10mV		$@T_A = 25^{\circ}C,Uc=5V$			
Temperature coefficient of V _{OE}	TCV _{OE}	mV/K	-0.15	0.08	0.15	@-40°C <t<sub>A<125°C</t<sub>		
Temperature coefficient of V _{OUT}	TCV _{OUT}	%/K	-0.04	0.015	0.04	@-40°C <ta<125°c< td=""></ta<125°c<>		
Response time	t _r	μS	-	3	6	@ 90% of I _{PN}		
Frequency bandwidth(-3dB) (4)	BW	kHz	30		120	@-3dB		
Phase shift	Δφ	o	-4		0	@DC to 1MHz		
General data								
Ambient operating temperature	T_{A}	°C	-40+125					
Ambient storage temperature	T_{S}	°C	-55+150					
Mass	m	g	≤100g					
Isolation resistance	R _{IS}	ΜΩ	-	1000	-	@500VDC,ISO16750		
RMS voltage for AC insulation test	Ud	kV	-	-	2.5	50 Hz, 1 min, IEC 60664 p		
RMS voltage for DC insulation test	Ud	kV	-	-	3			
Electrostatic discharge voltage	$ m V_{ESD}$	kV	-	_	8			

Notes:


1) The output voltage Vout is fully ratiometric. The offset and sensitivity are dependent on the supply voltage $U_{\rm C}$ relative to the following formula:

$$I_{\rm P} = \left(\frac{5}{U_{\rm C}} \times V_{\rm out} - V_{\rm O}\right) \times \frac{1}{G}$$
 with G in (V/A)

Cheemi Technology Co., Ltd

Electronic schematic **Bill of Materials** Plastic case: PA66+30%GF Gnd Magnetic core: FeSi Gnd Electrical terminal coating: tin plated **Mounting recommendation D**Ucc Gnd O1 M3 Assembly torque max Gnd **Busbar TBD** O3 MI **Body TBD** -04 GND -O5 Ucc(+5V) General tolerance **D**Ucc Gnd General tolerance: $\leq \pm 0.5$ mm Remark: Vout > Vo when Ip flows in the positive direction (see arrow on

Remarks:

drawing).

- When the primary current Ip flows in the direction of the positive arrow, the output voltage Uout is greater than the offset voltage Uo (refer to the arrow marked on the drawing.
- The dynamic performance (di/dt and response time) is the best when the busbar is fully filled with primary perforation.
- > Sensors with different rated input currents and output voltages can be customized according to user needs.

WARNING: Incorrect wiring may cause damage to the sensor.

