

DATA SHEET

Automotive Current Transducer Open Loop Technology

P/N: CHK-HAH35S2L

Description

CHK-HAH35S2L three-phase current sensor series is an open-loop Hall current sensor with primary and secondary insulation for automotive control applications, measuring DC, AC and pulse currents. CHK-HAH35S2L family can be selected for different measuring current ranges (300A to 1200A)

Feature

- Hall effect open-loop sensor
- Low voltage applications
- +5V voltage supply
- The maximum allowable current is defined by bus T < +150 ° C
- Operating temperature range: $-40 \degree C < T < +125 \degree C$
- Output voltage: full ratio of sensitivity and offset.
- Three-phase integrated sensor
- Simplified mounting and pressure fit contacts eliminate welding

Advantages

- High precision, good linearity
- High frequency bandwidth
- Strong anti-interference ability

Applications

- Starter Generators
- HEV/EV application

Standards

• ISO16750

• GB/T28046

- Low temperature bleaching
- No insertion loss
- Very fast response time
 - Inverters
 - DC/DC converter

• GB

• IEC60068

Electrical data:

PARAMETERS	SYMBOL	UNIT	SPECIFICATIONS			CONDITIONS			
			MIN.	TYP.	MAX.	CONDITIONS			
Measuring range	I _{PM}	А	-		-	According to model: ± 800A ± 1200A			
Effective value of AC isolation withstand voltage	V_d	KV	-	3	-	50HZ, 1min, IEC 60664 Part 1			
Insulation impedance	R _{IS}	MΩ	500	-	-	500V DC-ISO 16750			

Cheemi Technology Co., Ltd

Tel: 025-85996365 E-mail: info@cheemi-tech.com www. cheemi-tech.com Add:N22, Xianlongwan, Xianyin South Road, Qixia District, Nanjing - China. July 6th, 2023/Version 1

IPN=800A~1200A

CE

RoHS

14001

1

Cheemi Technology Co., Ltd

Electrical safe distance	$d_{\rm CI}$	mm		6.4						
Creepage distance	d _{CP}	mm		4.8	-					
Working performance parameters:										
PARAMETERS	SYMBOL	UNIT	SPECIFICATIONS MIN. TYP. MAX		IONS MAX	CONDITIONS				
Rated measurement current	I _{PN}	А	-		-	According to model: $\pm 800 \pm 1200$				
Power supply voltage	Uc	V	4.75	5	5.25					
Rated measurement output	Uout	V	U out = $(UC/5) \times (Uo + S \times I_P)$		$+S \times I_{\rm P}$)	$@T_{A} = 25^{\circ}C$				
Sensitivity	S	mV/A	-	2000/I _{PN}	-	@Uc = 5V				
Sensitivity error	εG	%		±0.6		$@T_{A} = 25^{\circ}C, Uc = 5V$				
Zero offset voltage	Uo	V		2.5		@Uc = 5V				
Current consumption ₄₎	Ic	mA	-	45	60	$@T_{A} = 25^{\circ}C, Uc = 5V$				
Load resistance	RL	KΩ	4.7	10	-					
Output internal resistance	Rout	Ω	1	5	10	DC				
Capacitive load	C_L	nF	-	1	10					
Working temperature	T _A	°C	-40		125					
Performance parameters:										
Electronic offset voltage range	Uoe	mV	-10	±5	+10	$@T_A = 25^{\circ}C, Uc = 5V$				
Magnetic offset voltage range	U _{OM}	mV	-4	±3	+4	$@T_A = 25^{\circ}C, Uc=5V, after \pm I_P$				
Zero point accuracy	X_0	%	-0.5		+0.5	$@T_A = 25^{\circ}C, Uc = 5V$				
Linearity error	εL	%	-1		+1	Of full range				
Zero point voltage temperature coefficient	TCU _{OE AV}	mV/°C		±0.05		$@-40^{\circ}C < T_{A} < 125^{\circ}C$				
Output voltage temperature coefficient	TCU _{OUTAV}	%/°C		±0.03		@-40°C <t<sub>A<125°C</t<sub>				
Response time	tr	μs		2.5	6	@ 90% of I _{PN}				
Bandwidth	BW	KHz	40			@-3dB				
Phase shift	Δφ	0	-4		0	@DC to 1KHz				
Output noise	Uno pp	mV			10					

Notes:

1) The output voltage Vout is fully ratiometric. The offset and sensitivity are dependent on the supply voltage UC relative to the following formula:

 $I_P = (5 / U_C * U_{OUT} - U_O) * 1 / S$ with S in (V/A)

2) In order to avoid overheating of the busbar, magnetic ring, and Hall IC, the frequency of the primary side current must be limited.

Cheemi Technology Co., Ltd Tel: 025-85996365 E-mail: info@cheemi-tech.com www.cheemi-tech.com Add:N22, Xianlongwan, Xianyin South Road, Qixia District, Nanjing - China. July 6th, 2023/Version 1

2

Cheemi Technology Co., Ltd

Dimensions(mm): (Tolerance ±0.2mm)

Remarks:

- \triangleright When the primary current Ip flows to the direction of the positive arrow, the output voltage Uout is greater than the offset voltage Uo (refer to the arrow marked on the drawing (note: wrong wiring may cause damage to the sensor).
- \triangleright When the busbar is fully filled with primary perforations, the dynamic performance of accuracy (di/dt) is best.
- Sensors with different rated input current and output voltage can be customized according to user needs. ≻

WARNING : Incorrect wiring may cause damage to the sensor.

Cheemi Technology Co., Ltd *Tel: 025-85996365 E-mail: info@cheemi-tech.com* www.cheemi-tech.com Add:N22, Xianlongwan, Xianyin South Road, Qixia District, Nanjing - China. July 6th, 2023/Version 1