

DATA SHEET Hall Effect Current Sensor

P/N: CHB200L2F15D100S-S1

 $I_{PN}=\pm 200A$

Feature

- Closed- loop (compensated) current transducer
- Supply voltage: DC \pm 12~15V Capable measurement of currents: DC, AC, pulse with galvanic isolation between primary circuit and

secondary circuit.

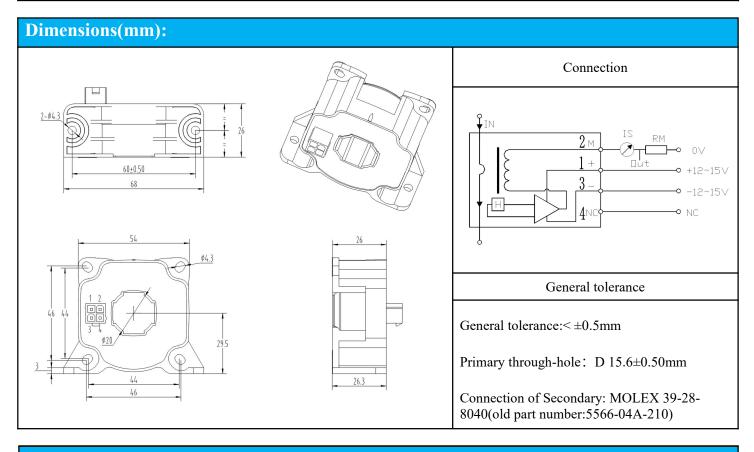
Advantages

- High accuracy
- Low temperature drift
- Optimized response time
- Very good linearity
- High immunity to external interference

Applications

- The application of variable frequency electrical appliances
- AC/DC variable-speed drive
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- The applications of inverter

Parameter Ref	CHB200L2F15D100S-S1 ±200		
Rated input IPN(A)			
Measuring range IP(A)	0 ~ ±500		
Turns ratio NP/NS (T)	1: 2000		
Output current Is (mA)		$\pm 100*I_P/I_{PN}$	
Secondary coil resistance $R_S(\Omega)$	@ T _A =+ 25°C	21.0	
	@ T _A =+ 85°C	25.0	
Inside resistance $R_M(\Omega)$	@ T _A =+ 85°C	$[(V_C-0.6V)/(I_S*0.001)]-R_S$	max
Supply voltage V _C (V)		$(\pm 12 \sim \pm 15) \pm 5\%$	
Accuracy X _G (%)	@I _{PN} ,T=25°C	<±0.5	
Offset current I _{OE} (mA)	@I _P =0,T=25°C	<±0.2	
Temperature variation of I _{OE} (mA)	$@I_P=0,-40 \sim +85^{\circ}C$	TYP< ±0.12 MAX< ±0.40	
Magnetic offset current I _{OH} (mA)	$@I_P=0\rightarrow 3*I_{PN}$	<±0.1	
Linearity error $\varepsilon r(\%FS)$		< 0.1	
Di/dt accurately followed (A/μs)		> 100	
Response time tra(µs)	@90% of I _{PN}	< 1.0	
Power consumption I _C (mA)	@±15V	17+Is	



Tel: 025-85996365 E-mail: info@cheemi-tech.com www. cheemi-tech.com Add:N22, Xianlongwan, Xianyin South Road, Qixia District, Nanjing - China.

Cheemi Technology Co., Ltd

Bandwidth BW (KHZ)	@-3dB, IPN	DC-100
Insulation voltage Vd(KV)	@50/60Hz, 1min, AC	6.0

General data:		
Parameter	Value	
Operating temperature T _A (°C)	-40 ~ +85	
Storage temperature T _S (°C)	- 55∼ +125	
Mass M(g)	78	
Plastic material	PBT G30/G15, UL94- V0;	
Standards	IEC60950-1:2001	
	EN50178:1998	
	SJ20790-2000	

Remarks:

- When the current goes through the primary pin of a sensor, the voltage will be measured at the output end.
- > Custom design is available for the different rated input current and the output voltage.
- The dynamic performance is the best when the primary hole if fully filled with.

WARNING: Incorrect wiring may cause damage to the sensor.

